COMPETENCY BASED ASSESSMENT DECEMBER 2023 CLASS XI

Q NO	CHAPTER	QUESTION	ANSWER	EXPLANATION
1	REDOX REACTION	The oxidation number of Cr in Cr(CO)6 is ———	ZERO	Cr is exhibiting 0 Oxidation State as CO (Carbon Monoxide) is with Zero Charge CO is a neutral ligand whose charge is zero. In Cr(CO)6 complex, oxidation number of Cr is zero.
2	REDOX REACTION	Which of the following is not a redox reaction? CaCO3 \rightarrow CaO + CO2 O2 + 2H2 \rightarrow 2H2O Na + H2O \rightarrow NaOH + 1/2H2 MnCl3 \rightarrow MnCl2 + 1/2 Cl2	Option - I	Solution: CaCO3 \rightarrow CaO + CO2 This is not a redox reaction because no element undergoes a change in oxidation number.
3	REDOX REACTION	In the reaction 3Br2 + 6CO32- + 3H2O → 5Br – + BrO3– + 6HCO3–	Bromine is both reduced and oxidised.	Solution: In this reaction, Br2 undergoes both decrease as well as increase in an oxidation number, it is both reduced and oxidised.
4	REDOX REACTION	Assertion: In a reaction Zn(s) + CuSO4 (aq) → ZnSO4(aq) + Cu(s) Zn is a reductant but itself get oxidized. Reason: In a redox reaction, oxidant is reduced by accepting electrons and reductant is oxidized by losing	Both Reason and Assertion are correct	

		electrons.		
5	REDOX REACTION	Assertion: HCIO4 is a stronger acid than HCIO3. Reason: Oxidation state of CI in HCIO4 is +VII and in HCIO3 +V.	Both are True but NOT correct explanation	
6	REDOX REACTION	Assertion: In the reaction 2Na(s) + Cl2(g) → 2NaCl(s) sodium is oxidised. Reason: Sodium acts as an oxidising agent in given reaction.	Assertion is False But Reason is True	
7	REDOX REACTION	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Both are correct but NOT correct Explanation	As the reaction is not a redox reaction is other assumption
8	REDOX REACTION	Oxidation number of P in PO43-, of S in SO42- and that of Cr in Cr2O72- are respectively:	+5, +6 and +6	Solution: PO43- : x + 4 (-2) = -3 \Rightarrow x = +5 SO42- : x + 4 (-2) = -2 \Rightarrow x = +6 Cr2O72- : 2x + 7(-2) = -2 \Rightarrow x = +6
9	REDOX REACTION	9. The oxidation number of Cr in K2Cr2O7 is:	+ 6	Solution: In the K2Cr2O7 complex, let the oxidation number of Cr be x. Then $2(+1) + 2(x) + 7$ (-2) = 0 \Rightarrow 2x = +12 \Rightarrow x = +6

10	REDOX REACTION	Consider the following reaction: Zn + Cu2+ → Zn2+ + Cu With reference to the above, which one of the following is the correct statement?	Zn is oxidised to Zn2+ ions.	Solution: Zn is oxidised to Zn2+ ions by releasing electrons.
		the correct statement?		